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Analytical methods are generally developed and optimized for specific commodities. Total Diet Studies,
representing typical food products ‘as consumed’, pose an analytical challenge since every food product is
different. In order to address this technical challenge, a selective and sensitive analytical method was developed
suitable for the quantitation of ochratoxin A (OTA) in Canadian Total Diet Study composites. The method uses
an acidified solvent extraction, an immunoaffinity column (IAC) for clean-up, liquid chromatography-tandem
mass spectrometry (LC-MS/MS) for identification and quantification, and a uniformly stable isotope-labelled
OTA (U-[13C20]-OTA) as an internal recovery standard. Results are corrected for this standard. The method is
accurate (101% average recovery) and precise (5.5% relative standard deviation (RSD)) based on 17 duplicate
analysis of various food products over 2 years. A total of 140 diet composites were analysed for OTA as part of
the Canadian Total Diet Study. Samples were collected at retail level from two Canadian cities, Quebec City and
Calgary, in 2008 and 2009, respectively. The results indicate that 73% (102/140) of the samples had detectable
levels of OTA, with some of the highest levels of OTA contamination found in the Canadian bread supply.

Keywords: total diet; market basket survey; liquid chromatography-mass spectrometry (LC/MS); mycotoxins;
ochratoxin A; processed foods

Introduction

Ochratoxin A (OTA) is a toxic secondary metabolite

of certain Aspergillus spp. (e.g. A. ochraceus and

A. carbonarius) and of Penicillium verrucosum

(Abarca et al. 2001; Varga et al. 2002). The chemical

structure of OTA is 7-L-�-phenylalanylcarbonyl-5-
chloro-8-hydroxy-3,4-dihydro-3-R-methylisocoumarin.

OTA is carcinogenic to rodents, possesses nephrotoxic,

immunotoxic, teratogenic and genotoxic properties,

and has been associated with human and animal

kidney disease (Petzinger and Ziegler 2000; Clark and

Snedeker 2006; Pfohl-Leszkowicz and Manderville

2007; Pfohl-Leszkowicz et al. 2007). The

International Agency for Research on Cancer

(IARC) has given a Group 2B classification to OTA,

i.e. possibly carcinogenic to humans (Clark and

Snedeker 2006). There is considerable information on

the natural occurrence of OTA in human foods and

foodstuffs, including cereals and cereal-derived foods,

beer, coffee, beans, cocoa, dried vine fruit and other

dried fruits such as figs, wine, grape juice, olives, nuts,

spices, liquorice, botanicals, milk, and pork meat

(particularly liver and kidney), as well as in human

blood and mother’s milk (Clark and Snedeker 2006;
Duarte et al. 2009; Kuiper-Goodman et al. 2010). A
wide variety of analytical methods has been used for
surveillance of OTA in all kinds of foods (Monaci and
Palmisano 2004; Visconti and De Girolamo 2005).
They include immunoaffinity column (IAC) clean-up
and liquid chromatography-tandem mass spectrometry
(LC-MS/MS) determination. In addition, the commer-
cial availability of stable isotope-labelled OTA allowed
the development of isotope dilution mass spectrometry
for the analysis of OTA (Noba et al. 2009), so
extension to Total Diet Study (TDS) composites was
a natural progression. To our knowledge, this is the
first instance of this combination of technologies being
successfully applied for a mycotoxin in a TDS.

Materials and methods

Sampling

The design of the Canadian TDS was described in
detail by Conacher et al. (1989). Briefly, in each city,
foods from four different supermarkets and a variety
of fast-food chains were collected over a 5-week period
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during September and October by the Canadian Food
Inspection Agency. The samples were shipped to the
Department of Food Science, University of Guelph,
Kemptville, ON, where they were prepared as they
would be in an average Canadian household using
standard recipes. The prepared foods were homoge-
nized and combined, as per Canadian TDS protocol,
into 149 different food composites. For the OTA
determinations, 100 g of each composite were stored
in glass jars with Teflon-lined caps at �20�C until
analysis.

Only those foods deemed likely to contain OTA
were selected for analysis.

Chemicals and materials

The OTA standard in crystal form was purchased from
Sigma-Aldrich (St. Louis, MO, USA). The U-[13C20]-
OTA was purchased from Biopure (Tulin, Austria).
Toluene and chloroform were obtained from Caledon
Laboratories Ltd (Georgetown, ON, Canada).
Acetonitrile (ACN) and high-performance liquid chro-
matography (HPLC)-grade methanol (MeOH) were
obtained from Fisher Scientific (Fair Lawn, NJ, USA).
HPLC-grade acetic acid, American Chemical Society
(ACS)-grade disodium hydrogen orthophosphate,
potassium dihydrogen phosphate, and potassium chlo-
ride were obtained from EMD Science (Gibbstown,
NJ, USA). ACS-grade sodium chloride was obtained
from J. T. Baker (Philipsburg, NJ, USA). ACS-grade
potassium dichromate (Baker Analyzed) was used to
calibrate the ultraviolet (UV) light spectrophotometer.
Water used throughout was generated with the Purelab
Ultra Water Purification System from ELGA
LabWater (VWS (UK) Ltd., Marlow, Bucks, UK).
OchraTest WB columns were obtained from Vicam
(Watertown, MA, USA).

Preparation and calibration of OTA

An OTA stock solution was prepared to give a
concentration of about 25 mgml�1 in toluene–acetic
acid (99 : 1, v/v) and was calibrated using a UV
spectrophotometer according to Association of
Analytical Communities (AOAC) International
Official Methods of Analysis 970.44, 971.22 and
973.37 (Horwitz and Latimer 2005). The calibrated
OTA stock solution was diluted with additional
toluene–acetic acid (99 : 1, v/v) to give a working
standard solution of 2 mgml�1. An aliquot of 62.5 ml
was pipetted into a 50ml volumetric flask and the
solvent was evaporated to dryness under a gentle
stream of nitrogen. The residue was redissolved and
diluted to volume with acetonitrile to prepare the
standard calibrants. The OTA solutions were kept at –
20�C until use.

Sample extraction and clean-up (IAC)

Approximately 10 g or 10ml of the sample, spiked with
a known quantity of U-[13C20]-OTA, were extracted
with 30ml chloroform and 30ml phosphoric acid–
saline solution (33.7ml of phosphoric acid and 18 g of
NaCl in 1L of water). The mixture was homogenized
and centrifuged. The bottom chloroform layer was
then transferred to a 50ml centrifuge tube and
extracted three times with 15ml phosphate-buffered
solution (PBS) at pH 7.4. The resultant three PBS
solutions were combined and passed through an IAC.
Toxins bound to the antibody were eluted four times,
with 1ml methanol each time, into a silanized tube.
The eluate was evaporated under a gentle stream of
nitrogen. The residue was reconstituted in 200 ml of
acetonitrile–water (1 : 9, v/v). For samples such as
wine, beer and juice, approximately 10ml of sample
were diluted with 50ml of PBS and spiked with a
known quantity of U-[13C20]-OTA. The mixture was
homogenized, centrifuged and passed through an IAC
as previously described.

Liquid chromatography-tandem mass spectrometry
analysis (LC-MS/MS)

A Waters Acquity ultra-performance liquid chromato-
graph (uPLC) coupled to a Waters Quattro Premier
Mass Spectrometer (Waters, Milford, MA, USA) was
used. The uPLC was equipped with a BEH C18
column (50� 2.1mm, 1.7mm; Waters). The mobile
phase consisted of a variable mixture of solutions A
(water–formic acid, 99 : 1 v/v) and B (acetonitrile–
formic acid, 99 : 1 v/v) at a flow rate of 0.3ml min�1.
The linear gradient program was set at: 90% A at
0min, 10% A at 7min, 90% A at 8min and 90% A
at 10min. The column temperature was maintained
above the ambient temperature at 30�C. Injection
volume was 20 ml.

The mass spectrometer was operated in the positive
electrospray ionization mode with argon as the colli-
sion gas. Multiple reaction monitoring (MRM) mode
was configured to monitor the following mass-to-
charge ratio (m/z) transitions: both 404 to 239 and 404
to 358 for OTA, as well as 424 to 250 for U-[13C20]-
OTA. The most abundant product ion (m/z 239) was
used for quantitation while the second product ion
(m/z 358) was for confirmation.

Calibration and data analysis

A five-point OTA standard curve ranging from 0.25 to
25 ngml�1, with a known quantity of U-[13C20]-OTA
as internal standard, was prepared for sample analysis.
Data collection and reduction was achieved using
Micromass Masslynx software release number 4.1.
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Quality assurance (QA) and quality control (QC)
measures

The following measures were taken to ensure the
validity of results: before sample analysis, a low
concentration OTA standard (0.25 ngml�1) was run
in order to verify adequate system performance,
defined as a total ion chromatograph (TIC) signal-to-
noise (S/N) ratio greater than 10 : 1. In addition, the
correlation coefficient (r2) for the calibration range
was required to be greater than 0.995. As previ-
ously mentioned, OTA stock solution was calibrated
by standard AOAC International methods in
order to ensure accuracy and multi-year consistency
of results.

During sample analysis, each batch was prepared
to include a reagent blank to control for background
contamination and duplicate spiked samples
(0.25 ng g�1) to confirm OTA recovery of 100%�
33%. An intermediate-level calibration standard fol-
lowed each sample batch; when compared with the
leading calibration standard, a retention time with-
in� 3% and response� 20% was considered to con-
firm system stability. An ion ratio of 1.9� 20% for m/z
239/358 represented the minimum requirement for the
identification and confirmation of OTA. In addition,
the per cent recovery for U-[13C20]-OTA for each
sample needed to be greater than 15%.

Results and discussion

Method development

Background

The goal was to develop a single method that would
work for the wide variety of food products present in
a TDS, and would also be highly sensitive in order to
account for the dilution effect from mixtures of
contaminated and uncontaminated raw ingredients.

Several analytical approaches were considered.
The direct analysis of crude extracts by LC-MS/MS
with isotope-labelled OTA internal standard was
considered but this would not achieve the sensitivity
required for a TDS. A purification and concentration
step such as IAC clean-up is needed to improve
sensitivity.

IAC clean-up with HPLC and fluorescence detec-
tion was also considered. However, it is known that
solvent extraction efficiencies, and therefore recoveries
for mycotoxins can vary depending on the solvent and
food product combination (Bradburn et al. 1995;
Meister 1999; Ribeiro and Alves 2008; Malone 2010).
Indeed, even liquid food products with no extraction
may require method optimization of IAC conditions to
improve recoveries (Noba et al. 2009). The different
recoveries expected within a TDS would result in
compromised quantitations. In order to ensure accu-
rate quantitations, isotope dilution mass spectrometry

with IAC clean-up to improve sensitivity was deemed
the best option for a single TDS method. Isotope-
labelled OTA (U-[13C20]-OTA) was added to the food
products at the beginning of the process and carried
through to the final quantitation, thereby correcting
for the expected recovery differences.

Chloroform extraction

There are many solvent-extraction combinations used
in OTA analysis. Chloroform was selected since it had
been successfully used in a previous TDS (Sizoo and
van Egmond 2005), in a duplicate diet study (Gilbert
et al. 2001), in official methods of analysis for grains
such as those of AOAC International (Horwitz and
Latimer 2005, Method 991.44), and in a variety of non-
grain matrices such as serum/blood, milk and meat
(Zimmerli and Dick 1995; De Saeger et al. 2004;
Moreno et al. 2005; Boudra and Morgavi 2006; Lino
et al. 2008). The wide breadth of use suggested it as a
good generic extraction solvent for the many types of
matrices expected in the present TDS.

IAC purification and fortification

IAC was selected since it is an established technology
and can be used both to purify and concentrate a
sample in order to maximize sensitivity. An issue was
identified during the developmental stage: the IACs
contained varying levels of residual OTA incurred
during the manufacturing process. The levels ranged
from non-detected to above the limit of detection
(LOD). In order to avoid potential false-positives, it
was decided to precondition all IACs as follows: the
PBS was drained and 10ml of water were passed
through the column, which was then washed with two
1-ml portions of methanol; next, 20ml of the PBS were
added to the column and allowed to drain to the top of
the supporting material. This procedure removed the
residual OTA from the IACs, which helped eliminate
potential false-positives and maximized method sensi-
tivity. Other IAC brands were not evaluated for
residual OTA contamination.

Method validation and performance characteristics

Accuracy and precision estimation by spikes

To determine precision and recovery, duplicate sam-
ples of various commodities were spiked with 0.25 or
0.25 ngml�1 OTA. Based on a total of 17 duplicates
(34 data points) spread over 2 years of samples, the
total method precision was estimated to have a relative
standard deviation (%RSD) of 5.5% with 101%
recovery (Table 1). A one-way analysis of variance
(ANOVA) was applied to the results in order to sep-
arate the error components. The %RSD of within- and
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between-run batch variability were 4.4% and 3.3%,
respectively.

Accuracy evaluation by external reference materials

Two wine samples (T1755, T1785) were purchased
from the Food Analysis Performance Assessment
Scheme (FAPAS). The OTA concentrations in these
samples were sufficiently well characterized from the
results of laboratories participating in a proficiency test
that they may be used as quality-control materials.
Analysis of duplicate samples gave 1.63, 1.51 and 0.74,
0.76 mg l�1 for T1755 and T1785, respectively. The
acceptance criteria were 0.91–2.35 mg l�1 (assigned
value of 1.63mg l�1) and 0.50–1.27mg l�1 (assigned
value of 0.88 mg l�1) for T1755 and T1785, respectively,
indicating that the method was accurate.

Accuracy evaluation by method comparison

An oat sample was analysed by both this new method
and an International Organization for Standardization
(ISO)-accredited (standard) method. The accredited
method was based on IAC clean-up with ultra-HPLC
and fluorescence detection. Both results were recovery
corrected. There was close agreement between the two

methods, with 0.87 and 0.80 ng g�1 found with the new

and standard methods, respectively.

Limit of detection (LOD) and limit of
quantitation (LOQ)

Due to the unique nature of each food product, the

LOD and LOQ were estimated for each food product

(Table 3). The LOD estimates were low and ranged

from 0.001 (rice) to 0.008 ng g�1 (cheese). The LOD

and LOQ were estimated as 3 : 1 and 10 : 1 S/N

respectively.

Table 1. Method accuracy and precision.

Accuracy, duplicate recoveries (%)a Precision, analysis of varianceb

Food product 1 2 Type of precision Results (%RSD)

Year 1
Tea 98.5 95.8 Within-run 4.4
Alcoholic drinks, wine 103.1 101.0
Desserts 102.7 95.1 Between-run 3.3
Formulae, milk base 102.5 98.1
Vegetables, peas, fresh 105.3 99.0 Total 5.5
Dinners, cereals plus vegetables plus meat 103.4 94.9
Cereals, mixed 103.6 90.2
Bread, white 104.9 111.6
Pork, fresh 103.7 114.0

Year 2
Milk, 2% 102.6 99.8
Lamb, fresh 95.3 102.4
Cereals, corn 93.0 97.3
Rice 106.4 108.3
Peas, processed 96.0 90.2
Tea 105.6 104.9
Desserts 99.2 97.0
Dinners, cereals plus vegetables plus meat 94.6 99.5

Average 101

Notes: aPercentage recovery was calculated as [(Cobs –Cnative)/Cspike]� 100, where Cobs is the observed concentration of the
spiked composite; Cnative is the concentration of the unspiked composite; and Cspike is the spiking level. Cobs and Cnative

were recovery-corrected using 13C-labelled ochratoxin A (OTA). Cspike is 0.25 ng g
�1 or 0.25 ngml�1for dry or wet composites,

respectively.
bAnalysis of variance (ANOVA) is expressed as percentage relative standard deviation (RSD).

Table 2. Ochratoxin A homogeneity and stability in select
food products.

Food product

Analysed in
Year 1
(ng g�1)

Reanalysed in
Year 2 (ng g�1)

Duplicate 1 Duplicate 2

Bread, rye 1.00 1.08 1.06
Bread, white 0.77 0.84 0.85
Bread, whole wheat 1.27 1.23 1.25
Buns and rolls 1.02 1.00 1.01
Flour, white (wheat) 0.39 0.42 0.44
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Table 3. Results from two Canadian cities: Quebec City and Calgary.

Resultsa,b

Code Food product
Quebec

City, 2008
Calgary,
2009

Limit of
detection (LOD),

S/N¼ 3 : 1

Limit of
quantification

(LOQ), S/N¼ 10 : 1 Units

KK01 Alcoholic drinks, beer 0.04 0.01 0.002 0.005 ngml�1

KK02 Alcoholic drinks, wine 0.02 n.d.c 0.002 0.005 ngml�1

GG01 Baked beans, canned 0.01 n.d. 0.003 0.009 ng g�1

GG02 Beans, string 0.53 n.d. 0.002 0.006 ng g�1

HH05 Blueberries n.d. n.d. 0.002 0.005 ng g�1

FF21 Bread, other 0.45 0.42 0.002 0.006 ng g�1

FF03 Bread, rye 1.0 0.57 0.003 0.009 ng g�1

FF01 Bread, white 0.77 0.67 0.003 0.010 ng g�1

FF02 Bread, whole wheat 1.3 0.83 0.004 0.012 ng g�1

FF20 Buns and rolls 1.0 1.2 0.003 0.011 ng g�1

FF04 Cake 0.07 0.04 0.002 0.005 ng g�1

JJ02 Candy 0.01 n.d. 0.003 0.010 ng g�1

FF05 Cereals, cooked wheat 0.04 0.01 0.002 0.009 ng g�1

FF06 Cereals, corn 0.01 0.01 0.003 0.010 ng g�1

LL01 Cereals, mixed 0.43 0.01 0.003 0.010 ng g�1

FF07 Cereals, oatmeal 0.11 0.11 0.003 0.009 ng g�1

FF08 Cereals, rice and bran 0.27 0.26 0.004 0.011 ng g�1

AA09 Cheese n.d. n.d. 0.008 0.025 ng g�1

AA11 Cheese, processed n.d. n.d. 0.006 0.019 ng g�1

NN04 Chicken burger 0.32 0.23 0.003 0.010 ng g�1

NN06 Chicken nuggets 0.09 0.04 0.003 0.010 ng g�1

JJ01 Chocolate bars 0.30 0.13 0.003 0.009 ng g�1

KK04 Coffee 0.02 0.01 0.002 0.008 ngml�1

FF09 Cookies 0.21 0.20 0.003 0.008 ng g�1

GG27 Corn chips 0.03 n.d. 0.003 0.008 ng g�1

FF10 Crackers 0.44 0.03 0.003 0.010 ng g�1

FF11 Danish, donuts and croissants 0.24 0.35 0.003 0.008 ng g�1

LL02 Desserts n.d. n.d. 0.006 0.021 ng g�1

LL03 Dinners, cereal plus
vegetable plus meat

n.d. 0.01 0.002 0.008 ng g�1

CC01 Eggs n.d. n.d. 0.005 0.017 ng g�1

FF12 Flour, white (wheat) 0.39 1.7 0.004 0.014 ng g�1

LL05 Formulae, milk base n.d. n.d. 0.005 0.017 ngml�1

LL06 Formulae, soya base 0.01 0.02 0.002 0.006 ngml�1

MM02 Frozen entrees 0.06 0.05 0.002 0.006 ng g�1

HH10 Grape juice, bottled n.d. n.d. 0.002 0.006 ngml�1

HH11 Grapes n.d. n.d. 0.002 0.007 ng g�1

NN03 Hamburger 0.44 0.22 0.001 0.003 ng g�1

PP06 Herbs and spices 0.08 0.07 0.006 0.021 ng g�1

NN05 Hot dogs 0.38 0.41 0.004 0.012 ng g�1

AA07 Ice cream 0.02 0.03 0.002 0.007 ngml�1

BB07 Lamb n.d. n.d. 0.004 0.012 ng g�1

BB09 Luncheon meats, canned 0.01 0.01 0.002 0.008 ng g�1

LL08 Meat, poultry or eggs n.d. n.d. 0.002 0.007 ng g�1

AA02 Milk, 2% n.d. n.d. 0.002 0.007 ngml�1

AA13 Milk, chocolate, 1% 0.02 0.01 0.002 0.006 ngml�1

FF13 Muffins 0.20 0.19 0.002 0.007 ng g�1

JJ12 Nuts 0.02 0.03 0.002 0.007 ng g�1

BB10 Organ meats n.d. 0.01 0.004 0.015 ng g�1

FF14 Pancakes and waffles 0.10 0.16 0.003 0.009 ng g�1

FF15 Pasta, mixed dishes 0.13 0.07 0.002 0.005 ng g�1

FF16 Pasta, plain 0.34 0.07 0.002 0.005 ng g�1

JJ07 Peanut butter 0.04 n.d. 0.002 0.007 ng g�1

GG14 Peas n.d. n.d. 0.003 0.010 ng g�1

FF17 Pie, apple 0.11 0.13 0.002 0.006 ng g�1

FF18 Pie, other 0.11 0.09 0.001 0.005 ng g�1

NN01 Pizza 0.21 0.22 0.002 0.007 ng g�1

MM01 Popcorn, microwave n.d. n.d. 0.002 0.007 ng g�1

(Continued )
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Matrix effects study

The type of food analysed may impact on the accuracy
of the results. The F-test was used to evaluate whether
there was any significant difference between commod-
ities when results were corrected for recovery with
isotope-labelled OTA (U-[13C20]-OTA). Statistical
analysis of the 17 duplicate recoveries from various
food products over 2 years (Table 1) indicated no
significant difference in food products at the 95%
confidence level when results were recovery corrected.

Results

Study considerations

The TDS is an important part of the Canadian
government’s surveillance programme. Among other
purposes, the data can be used to estimate dietary
intakes of nutrients and exposures to contaminants, to
monitor trends in levels thereof, and to inform
planning of targeted surveys. A consideration for
interpreting the results of this study is that while high
values demonstrate the presence of contaminants, low
values cannot be taken as definitive proof of their
absence. This is due to the high variability in myco-
toxin levels observed in targeted surveys; the %RSD
between samples can range from around 40% to 260%
(Counil et al. 2005), while the variability between
different lots of product can reach several orders of
magnitude (Kuiper-Goodman et al. 2010). A good
example from the present study to highlight this
variability would be the raisin values for the 2 years:
0.17 and 2.3 ng g�1. Another consideration is that the

mixed nature of the foods analysed in the TDS makes
it difficult to determine the main source of
contamination.

Occurrence, levels and trends of OTA contamination

All the results are presented in alphabetical order by
food product (Table 3). The highest value in 2008 was
for raisins at 2.3 ng g�1. The highest value in 2009 was
for wheat flour at 1.7 ng g�1. In both years, 73%
(51/70) of the samples had detectable levels of OTA
(greater than the LOD). In 2008, 67% (47/70) were
above the LOQ, while in 2009, 61% (43/70) were above
the LOQ. To help identify trends, Table 4 presents the
top 20 OTA-contaminated samples sorted by the
2-year average result. Bread is a high-consumption
staple food for both adults and children. Some of the
highest levels of OTA contamination were found in the
domestic bread supply for both sampling years
(Table 4). Indeed, cereal-containing food products
represent the majority (16/20) of the top 20 OTA
contaminated samples (Table 4). This is not surprising,
as cereals and cereal-derived products have been
previously shown to be the main contributors to
human exposure in both Europe (Miraglia and Brera
2002) and Canada (Kuiper-Goodman et al. 2010).

OTA homogeneity and stability in selected
food products

In order to test for homogeneity and stability, five
samples from 2008 were reanalysed in duplicate after 1
year in frozen storage (Table 2). The data indicate that

Table 3. Continued.

Resultsa,b

Code Food product
Quebec

City, 2008
Calgary,
2009

Limit of
detection (LOD),

S/N¼ 3 : 1

Limit of
quantification

(LOQ), S/N¼ 10 : 1 Units

BB05 Pork, cured 0.06 0.20 0.003 0.012 ng g�1

BB04 Pork, fresh 0.03 0.23 0.004 0.011 ng g�1

JJ08 Puddings 0.03 0.02 0.002 0.005 ng g�1

HH17 Raisins 2.3 0.17 0.004 0.013 ng g�1

FF19 Rice n.d.c n.d. 0.001 0.004 ng g�1

JJ11 Seeds, shelled 0.07 0.35 0.003 0.008 ng g�1

KK07 Soy beverage, fortified 0.05 0.02 0.002 0.006 ngml�1

PP07 Soya sauce n.d. n.d. 0.002 0.007 ngml�1

KK06 Tea n.d. n.d. 0.002 0.007 ngml�1

PP05 Vanilla extract n.d. 0.02 0.002 0.006 ngml�1

BB06 Veal, cutlets n.d. n.d. 0.004 0.012 ng g�1

LL09 Vegetables, peas n.d. n.d. 0.003 0.008 ng g�1

BB11 Wieners and sausages 0.12 0.06 0.002 0.007 ng g�1

Notes: aResults were corrected for recovery.
bValues below the estimated LOD are provided for potential statistical analysis. It has been reported that the relative uncertainty
at the LOD is 100% and at the LOQ is 30%, both with a 95% confidence level (Taylor 1987).
cn.d., Not detected.
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in these food products the samples remain homoge-

neous and OTA is stable after 1 year in frozen storage.

Year-to-year consistency of results also minimizes
between-year bias and suggests that differences in

contaminant levels between 2008 and 2009 samples of

the same product are true differences.

Summary and conclusions

Previously, TDS composites were analysed for OTA
using different methods for different food products.

This approach was labour intensive and often lacked

sufficient sensitivity. This paper describes a single,
cost-effective, practical, in-house-validated analytical

method that is both accurate and precise. It is well

suited for the technical challenge imposed by the

different food products in TDS.

Bread is a high-consumption staple for both adults

and children. The results indicate that bread and, more

generally, cereal-containing food products, appear to

be a primary source of OTA exposure for the 2008 and

2009 sampling years. Further research is needed to

characterize and perhaps mitigate risk more fully.
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NN05 Hot dogs With : without condiments (1 : 1) from fast
food outlets

0.38 0.41 0.40 Yes

NN03 Hamburger Hamburger : cheeseburger (1 : 1) from fast
food outlets, with condiments

0.44 0.22 0.33 Yes

FF11 Danish, donuts
and croissants

Danish pastry-or-cinnamon buns : cake
donuts : yeast donuts-or-dutchies :
croissants (1 : 1 : 1 : 1)

0.24 0.35 0.30 Yes

NN04 Chicken burger Plain, no condiments from fast food outlets 0.32 0.23 0.28 Yes
FF08 Cereals, rice and bran Rice cereal: bran cereal : bran and raisin

cereal (1 : 1 : 1)
0.27 0.26 0.26 Yes

GG02 Beans, string String beans (raw or frozen) : string beans
(canned) (1 : 1)

0.53 n.d.b 0.26 No

FF10 Crackers Saltines or soda biscuits 0.44 0.03 0.24 Yes
NN01 Pizza One medium combination pizza (pepperoni,

mushroom, green pepper) from fast food
outlets

0.21 0.22 0.22 Yes

LL01 Cereals, mixed One box from each store, mixed together
(types not specified), prepared with
whole milk (AA01)

0.43 0.01 0.22 Yes

JJ01 Chocolate bars Plain milk chocolate bars 0.30 0.13 0.22 No
JJ11 Seeds, shelled Sunflower 0.07 0.35 0.21 No
FF09 Cookies Oreo-type : chocolate chip : oatmeal (1 : 1 : 1) 0.21 0.20 0.21 Yes
FF16 Pasta, plain Spaghetti (enriched):macaroni

(enriched) (1 : 1)
0.34 0.07 0.21 Yes

Notes: aResults were corrected for recovery.
bn.d., Not detected.
cCereal: contains a cereal such as wheat, oat, rye, etc. as a raw ingredient.
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